Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 4

Answer

$\Sigma_{k=0}^{\infty} \dfrac {(-1)^k\pi^{2k+1} x^{2k+1}} {(2k+1)!} $

Work Step by Step

The Maclaurin Series is $ \displaystyle\sum\limits_{n=0}^{\infty} \frac{f^n(0)x^n} {n!} = f(0) + f'(0)x + \frac{(f''(0)x^2)}{2!} + ..\\ $ $f(x)=\sin \pi x$ $f'(x)=\pi cos\pi x$ $f''(x)=-\pi^2 \sin \pi x$ $f'''(x)=-\pi^3 \cos \pi x$ $f''''(x)=\pi^4 \sin \pi x$ Now $f(0)=\pi$ , $f'(0)=\pi$ , $f''(0)=0$, $f'''(0)=-\pi^3 $, $f''''(0)=0$ Hence the Maclaurin Series for the function is $\displaystyle \pi x - \frac {\pi^3 x^3} {2!} + .......+ \frac {(-1)^3\pi^{2n+1} x^{2n+1}} {(2k+1)!} = \Sigma_{k=0}^{\infty} \frac {(-1)^k\pi^{2k+1} x^{2k+1}} {(2k+1)!} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.