Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 16

Answer

$\Sigma_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{(2k+1)!} (x-\dfrac{\pi}{2})^{2k+1}$

Work Step by Step

The Maclaurin Series is $ \displaystyle\sum\limits_{n=0}^{\infty} \frac{f^n(0)x^n} {n!} = f(0) + f'(0)x + \frac{(f''(0)x^2)}{2!} + ..\\ $ $f(x)=\cos (x)$ Differentiate $f'(x)=-\sin x$ $f''(x)=-\cos x$ $f'''(x)=\sin x$ Now $f(\pi/2)=0$, $f'(\pi/2)=-1$, $f''(\pi/2)=0$, $f'''(\pi/2)=1$ Hence the Maclaurin Series for the function is $\displaystyle -(x-\dfrac{\pi}{2})+\dfrac{1}{6}(x-\dfrac{\pi}{2})^3+.........+ \dfrac{(-1)^{n+1}}{(2n+1)!} (x-\dfrac{\pi}{2})^{2n+1}+....=\Sigma_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{(2k+1)!} (x-\dfrac{\pi}{2})^{2k+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.