Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 3

Answer

$\pi x - \frac {\pi^2 x^2} {2!} + \frac {\pi^4 x^4} {4!} - \frac {\pi ^6 x^6 } {6!} + ... = \sum\limits_{n=0}^{\infty} (-1)^n$ $\frac{(x \pi)^{2n}} {2n!} $

Work Step by Step

Maclauren Series is $ \sum\limits_{n=0}^{\infty} \frac{f^n(0)x^n} {n!} = f(0) + f'(0)x + \frac{(f''(0)x^2)}{2!} + ..\\ $ Given function, $f(x)=cos\pi x$ Differentiate w.r.t x $f'(x)=-\pi sin\pi x$ $f''(x)=-\pi^2 cos\pi x$ $f'''(x)=\pi^3 sin\pi x$ $f''''(x)=\pi^4 cos\pi x$ Now $f(0)=\pi$ , $f'(0)x =0 $ , $f''(0)-\pi^2$, $f'''(0)=0 $, $f''''(x)=\pi^4$ Hence the Maclaurin Series for the function is $\pi x - \frac {\pi^2 x^2} {2!} + \frac {\pi^4 x^4} {4!} - \frac {\pi ^6 x^6 } {6!} + ... = \sum\limits_{n=0}^{\infty} (-1)^n$ $\frac{(x \pi)^{2n}} {2n!} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.