Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 14

Answer

$\Sigma_{k=0}^{\infty} \dfrac{(-1)^k}{5^{k+1}}(x-3)^k$

Work Step by Step

The Maclaurin Series is $ \displaystyle\sum\limits_{n=0}^{\infty} \frac{f^n(0)x^n} {n!} = f(0) + f'(0)x + \frac{(f''(0)x^2)}{2!} + ..\\ $ $f(x)=\dfrac{1}{x+2}$ Differentiate $f'(x)=\dfrac{-1}{(x+2)^2}$ $f''(x)=\dfrac{2}{(x+2)^3}$ $f'''(x)=\dfrac{-6}{(x+2)^4}$ Now $f(3)=\dfrac{1}{5}$ , $f'(3)=-\dfrac{1}{25}$ , $f''(3)=\dfrac{2}{125}$, $f'''(3)=\dfrac{-6}{625}$ Hence the Maclaurin Series for the function is $\displaystyle \dfrac{1}{5}-\dfrac{1}{25}(x-3) +\dfrac{1}{125}(x-3)^3 .......+ \dfrac{(-1)^n}{5^{n+1}}(x-3)^k =\Sigma_{k=0}^{\infty} \dfrac{(-1)^k}{5^{k+1}}(x-3)^k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.