Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 12

Answer

$\Sigma_{k=0}^{\infty} \frac {(-1)^k(x-\ln 2)^k}{2k!} $

Work Step by Step

The Maclaurin Series is $ \displaystyle\sum\limits_{n=0}^{\infty} \frac{f^n(0)x^n} {n!} = f(0) + f'(0)x + \frac{(f''(0)x^2)}{2!} + ..\\ $ $f(x)=e^{-x}$ Differentiate $f'(x)=-e^{-x}$ $f''(x)=e^{-x}$ $f'''(x)=-e^{-x}$ Now $f(\ln 2)=\dfrac{1}{2}$ , $f'(\ln 2)=-\dfrac{1}{2}$ , $f''(\ln 2)=\dfrac{1}{2}$, $f'''(\ln 2)=-\dfrac{1}{2}$ Hence the Maclaurin Series for the function is $\displaystyle \dfrac{1}{2}-\dfrac{1}{2}(x-\ln 2) +\dfrac{1}{4}(x-\ln 2)^2- .......+ \frac {(-1)^n(x-\ln 2)^n}{2n!} = \Sigma_{k=0}^{\infty} \frac {(-1)^k(x-\ln 2)^k}{2k!} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.