Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.8 Maclaurin And Taylor Series; Power Series - Exercises Set 9.8 - Page 667: 36

Answer

The interval of convergence for the series is: $(\dfrac{-1}{2}, \dfrac{1}{2}]$ and the radius of convergence is $R=\dfrac{1}{2}$.

Work Step by Step

Ratio Test: Let us consider a series $\Sigma a_k$ whose limit $l$ can be obtained as: $ l=\lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|$ 1. For $l \lt 1$, the series is absolutely convergent. 2. For $l \gt 1$, the series is divergent. 3. For $l = 1$, the series is inconclusive. Therefore, $ L=\lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|\\=\lim\limits_{k \to \infty} \dfrac{2^{k+1}x^{k+2}}{k+2} \times \dfrac{k+1}{2^k x^{k+1}} \\=\lim\limits_{k \to \infty} \dfrac{2(k+1)}{k+2}|x|\\=2 |x|$ So, we can conclude that the given series converges absolutely if $l=2|x| \lt 1$ for $-1\lt 2x \lt 1$ or $\dfrac{-1}{2} \lt x \lt \dfrac{1}{2}$. It diverges if $l=2|x| \gt 1$ . Therefore, the interval of convergence for the series is: $(\dfrac{-1}{2}, \dfrac{1}{2}]$ and the radius of convergence is $R=\dfrac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.