Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 50

Answer

$$A = 2\ln 3$$

Work Step by Step

$$\eqalign{ & {\text{The area if the region is given by}} \cr & A = \int_4^{ + \infty } {\frac{8}{{{x^2} - 4}}} dx \cr & {\text{Using the definition of improper integrals}} \cr & A = \mathop {\lim }\limits_{b \to + \infty } \int_4^{ + \infty } {\frac{8}{{{x^2} - 4}}} dx \cr & A = 8\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{{x^2} - 4}}} \right]_4^b \cr & {\text{Integrate using }}\int {\frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}\ln \left| {\frac{{x - a}}{{x + a}}} \right| + C} \cr & A = 8\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{2\left( 2 \right)}}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right|} \right]_4^b \cr & A = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{x - 2}}{{x + 2}}} \right|} \right]_4^b \cr & A = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{x - 2}}{{x + 2}}} \right|} \right]_4^b \cr & A = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{b - 2}}{{b + 2}}} \right| - \ln \left| {\frac{{4 - 2}}{{4 + 2}}} \right|} \right] \cr & {\text{Evaluate the limit}} \cr & A = 2\left[ {\ln \left| {\frac{{\infty - 2}}{{\infty + 2}}} \right| - \ln \left| {\frac{1}{3}} \right|} \right] \cr & A = 2\left[ {\ln \left| { - 1} \right| - \ln \left| {\frac{1}{3}} \right|} \right] \cr & A = 2\left[ { - \ln \left| {\frac{1}{3}} \right|} \right] \cr & A = 2\ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.