Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 40

Answer

$\dfrac{\pi}{2}$

Work Step by Step

Let us consider that $I=\int_{0}^{\infty} \dfrac{e^{-x}}{\sqrt {1-e^{-2x}}} dx$ Plug in $a=e^{-x} \implies da=-e^{-x} \ dx$ Integrate the integral by using limits. $I=\int_{0}^{\infty} \dfrac{e^{-x}}{\sqrt {1-e^{-2x}}} dx \\=\int_{0}^{1} \dfrac{dx}{\sqrt {1-a^2}} dx\\=\lim\limits_{z \to 1}|\sin^{-1} (a)|_0^1\\=\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.