Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 49

Answer

$$\frac{1}{3}$$

Work Step by Step

$$\eqalign{ & {\text{The area if the region is given by}} \cr & A = \int_0^{ + \infty } {{e^{ - 3x}}} dx \cr & {\text{Using the definition of improper integrals}} \cr & A = \mathop {\lim }\limits_{b \to + \infty } \int_0^b {{e^{ - 3x}}} dx \cr & A = \mathop {\lim }\limits_{b \to + \infty } \left[ { - \frac{1}{3}{e^{ - 3x}}} \right]_0^b \cr & A = - \frac{1}{3}\mathop {\lim }\limits_{b \to + \infty } \left[ {{e^{ - 3x}}} \right]_0^b \cr & A = - \frac{1}{3}\mathop {\lim }\limits_{b \to + \infty } \left[ {{e^{ - 3b}} - {e^0}} \right] \cr & {\text{Evaluate the limit}} \cr & A = - \frac{1}{3}\left[ {{e^{ - \infty }} - 1} \right] \cr & A = - \frac{1}{3}\left[ {0 - 1} \right] \cr & A = \frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.