Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 41

Answer

$$\dfrac{1}{2}$$

Work Step by Step

Let us consider that $I=\int_{0}^{\infty} e^{-x} \cos x dx$ Plug in $a=e^{-x} \implies da=\cos x \ dx$ Integrate the integral by using limits. $I=\lim\limits_{z \to \infty} \int_{0}^{z} e^{-x} \cos x \ dx \\=\lim\limits_{z \to \infty} [ e^{-x} \sin x ]_0^z-\lim\limits_{z \to \infty}\int_0^b -\sin x (-e^{-x} \ dx \\=0-\lim\limits_{z \to \infty}[ -e^{-x} \cos x ]_0^z- \lim\limits_{z \to \infty}\int_0^z e^{-x} \cos x \ dx\\=\dfrac{1}{2}(0+1)\\=\dfrac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.