Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 47

Answer

$$ - 1$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\ln x} dx \cr & {\text{Integrate }}\int {\ln xdx{\text{ by parts}}} \cr & u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr & dv = dx,{\text{ }}v = x \cr & \int {\ln x} dx = x\ln x - \int {x\left( {\frac{1}{x}} \right)} dx \cr & \int {\ln x} dx = x\ln x - \int {dx} \cr & \int {\ln x} dx = x\ln x - x + C \cr & {\text{Therefore,}} \cr & \int_0^1 {\ln x} dx = \mathop {\lim }\limits_{b \to {0^ + }} \left[ {\int_b^1 {\ln x} dx} \right] \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \left[ {x\ln x - x} \right]_b^1 \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \left[ {1\ln 1 - 1 - \left( {b\ln b - b} \right)} \right] \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \left[ { - 1 - b\ln b + b} \right] \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \left( { - 1} \right) - \mathop {\lim }\limits_{b \to {0^ + }} b\ln b + \mathop {\lim }\limits_{b \to {0^ + }} b \cr & {\text{Where, }}\mathop {\lim }\limits_{b \to {0^ + }} b\ln b = \mathop {\lim }\limits_{b \to {0^ + }} \frac{{\ln b}}{{1/b}} = \frac{\infty }{\infty } \cr & {\text{By the LHopital's rule}} \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \frac{{\ln b}}{{1/b}} = \mathop {\lim }\limits_{b \to {0^ + }} \frac{{1/b}}{{ - 1/{b^2}}} = - \mathop {\lim }\limits_{b \to {0^ + }} b = 0 \cr & {\text{Then}} \cr & {\text{ }} = \mathop {\lim }\limits_{b \to {0^ + }} \left( { - 1} \right) - \mathop {\lim }\limits_{b \to {0^ + }} b\ln b + \mathop {\lim }\limits_{b \to {0^ + }} b \cr & {\text{ }} = - 1 - 0 + 0 \cr & {\text{ }} = - 1 \cr & \int_0^1 {\ln x} dx = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.