Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 42

Answer

$\dfrac{1}{9}$

Work Step by Step

Let us consider that $I=\int_{0}^{\infty} x e^{-3x} \ dx$ Plug in $a=-3x \implies da=-3 \ dx$ Integrate the integral by using limits. $I=\int_{0}^{\infty} \dfrac{e^{a}\ a}{9} \ da\\=\dfrac{1}{9} \int_{0}^{\infty} e^a a \ da \\=\dfrac{1}{9} (a \ e^a-\int_0^{\infty} e^a da \\=\dfrac{1}{9} (a \ e^a-e^a)\\=\dfrac{1}{9} (-3x e^{-3x}-e^{-3x})\\=\lim\limits_{z \to \infty} \int_0^{\infty} x e^{-3x} \ dx \\=\dfrac{1}{9} \lim\limits_{z \to \infty} [-3x e^{-3x} -e^{-3x}]_0^z\\=\dfrac{1}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.