Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 555: 46

Answer

$\pi$

Work Step by Step

The arc length can be computed as: $L=\int_a^b \sqrt {1+(y^{\prime})^2} \ dx $ We are given that $y=\sqrt {4-x^2}$ and $y^{\prime}=-\dfrac{x}{\sqrt {4-x^2}}$ Now, the arc length is: $L=\int_{0}^{2} 1+(-\dfrac{x}{\sqrt {4-x^2}})^2 \ dx \\=\int_0^2 \sqrt {\dfrac{4}{4-x^2}}\ dx \\=2 \lim\limits_{a \to 2^{-}}\int_0^a \dfrac{1}{\sqrt {4-x^2}}\ dx\\=2 \lim\limits_{a \to 2^{-}} [\arcsin (x/2)]_0^a\\=2 \lim\limits_{a \to 2^{-}}[\arcsin (a/2)-\arcsin (0)]\\=2 (\dfrac{\pi}{2}-0)\\=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.