Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 35

Answer

$$y\left( x \right) = {x^2} + \ln x + 1$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{2{x^2} + 1}}{x},{\text{ }}y\left( 1 \right) = 2 \cr & {\text{Applying the Formula }}\left( {11} \right){\text{ }}y\left( x \right) = {y_0} + \int_{{x_0}}^x {f\left( t \right)dt} \cr & f\left( t \right) = \frac{{2{t^2} + 1}}{t},{\text{ }}{x_0} = 1,{\text{ }}{y_0} = 2 \cr & {\text{Then,}} \cr & y\left( x \right) = 2 + \int_1^x {\frac{{2{t^2} + 1}}{t}dt} \cr & y\left( x \right) = 2 + \left[ {{t^2} + \ln t} \right]_1^x \cr & y\left( x \right) = 2 + \left[ {{x^2} + \ln x} \right] - \left[ {{1^2} + \ln 1} \right] \cr & y\left( x \right) = 2 + {x^2} + \ln x - 1 + \ln 1 \cr & y\left( x \right) = {x^2} + \ln x + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.