Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 18

Answer

$$\eqalign{ & \left( {\text{a}} \right)0 \cr & \left( {\text{b}} \right)\sqrt {13} \cr & \left( {\text{c}} \right)\frac{6}{{\sqrt {13} }} \cr} $$

Work Step by Step

$$\eqalign{ & {\text{Let }}F\left( x \right) = \int_2^x {\sqrt {3{t^2} + 1} dt} \cr & \left( {\text{a}} \right)F\left( 2 \right) = \int_2^2 {\sqrt {3{t^2} + 1} dt} = 0 \cr & {\text{Differentiate}} \cr & F'\left( x \right) = \frac{d}{{dx}}\left[ {\int_2^x {\sqrt {3{t^2} + 1} dt} } \right] = \sqrt {3{x^2} + 1} \cr & \left( {\text{b}} \right)F'\left( 2 \right) = \sqrt {3{{\left( 2 \right)}^2} + 1} = \sqrt {13} \cr & F''\left( x \right) = \frac{d}{{dx}}\left[ {\sqrt {3{x^2} + 1} } \right] \cr & F''\left( x \right) = \frac{{6x}}{{2\sqrt {3{x^2} + 1} }} = \frac{{3x}}{{\sqrt {3{x^2} + 1} }} \cr & \left( {\text{c}} \right)F''\left( 2 \right) = \frac{{3\left( 2 \right)}}{{\sqrt {3{{\left( 2 \right)}^2} + 1} }} = \frac{6}{{\sqrt {13} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.