Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 17

Answer

$$\eqalign{ & \left( {\text{a}} \right)0 \cr & \left( {\text{b}} \right)0 \cr & \left( {\text{c}} \right)1 \cr} $$

Work Step by Step

$$\eqalign{ & {\text{Let }}F\left( x \right) = \int_0^x {\frac{{\sin t}}{{{t^2} + 1}}dt} \cr & \left( {\text{a}} \right)F\left( 0 \right) = \int_0^0 {\frac{{\sin t}}{{{t^2} + 1}}dt} = 0 \cr & {\text{Differentiate}} \cr & F'\left( x \right) = \frac{d}{{dx}}\left[ {\int_0^x {\frac{{\sin t}}{{{t^2} + 1}}dt} } \right] = \frac{{\sin x}}{{{x^2} + 1}} \cr & \left( {\text{b}} \right)F'\left( 0 \right) = \frac{{\sin 0}}{{{0^2} + 1}} = 0 \cr & F''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{\sin x}}{{{x^2} + 1}}} \right] \cr & F''\left( x \right) = \frac{{\left( {{x^2} + 1} \right)\left( {\cos x} \right) - \sin x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & \left( {\text{c}} \right)F''\left( 0 \right) = \frac{{\left( {{0^2} + 1} \right)\left( {\cos 0} \right) - \sin 0\left( {2\left( 0 \right)} \right)}}{{{{\left( {{0^2} + 1} \right)}^2}}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.