Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 13

Answer

$$g'\left( x \right) = 3{x^8} - 3{x^5}$$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \int_1^{{x^3}} {\left( {{t^2} - t} \right)} dt \cr & {\text{Differentiate }} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\int_1^{{x^3}} {\left( {{t^2} - t} \right)} dt} \right] \cr & {\text{Using the formula }}\left( {18} \right){\text{ }}\frac{d}{{dx}}\left[ {\int_a^{g\left( x \right)} {f\left( t \right)} dt} \right] = f\left( {g\left( x \right)} \right)g'\left( x \right) \cr & g'\left( x \right) = \left( {{{\left( {{x^3}} \right)}^2} - \left( {{x^3}} \right)} \right)\left( {3{x^2}} \right) \cr & g'\left( x \right) = \left( {{x^6} - {x^3}} \right)\left( {3{x^2}} \right) \cr & g'\left( x \right) = 3{x^8} - 3{x^5} \cr & \cr & {\text{Evaluating the integral}} \cr & g\left( x \right) = \int_1^{{x^3}} {\left( {{t^2} - t} \right)} dt = \left[ {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2}} \right]_1^{{x^3}} \cr & g\left( x \right) = \left( {\frac{{{{\left( {{x^3}} \right)}^3}}}{3} - \frac{{{{\left( {{x^3}} \right)}^2}}}{2}} \right) - \left( {\frac{{{{\left( 1 \right)}^3}}}{3} - \frac{{{{\left( 1 \right)}^2}}}{2}} \right) \cr & g\left( x \right) = \frac{{{x^9}}}{3} - \frac{{{x^6}}}{2} + \frac{1}{6} \cr & {\text{Differentiating}} \cr & g'\left( x \right) = \frac{{9{x^8}}}{3} - \frac{{6{x^5}}}{2} + 0 \cr & g'\left( x \right) = 3{x^8} - 3{x^5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.