Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 14

Answer

$$g'\left( x \right) = \frac{1}{{{x^2}}}\cos \left( {\frac{1}{x}} \right) - \frac{1}{{{x^2}}}$$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \int_\pi ^{1/x} {\left( {1 - \cos t} \right)} dt \cr & {\text{Differentiate }} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\int_\pi ^{1/x} {\left( {1 - \cos t} \right)} dt} \right] \cr & {\text{Using the formula }}\left( {18} \right){\text{ }}\frac{d}{{dx}}\left[ {\int_a^{g\left( x \right)} {f\left( t \right)} dt} \right] = f\left( {g\left( x \right)} \right)g'\left( x \right) \cr & g'\left( x \right) = \left( {1 - \cos \left( {\frac{1}{x}} \right)} \right)\left( { - \frac{1}{{{x^2}}}} \right) \cr & g'\left( x \right) = \frac{1}{{{x^2}}}\cos \left( {\frac{1}{x}} \right) - \frac{1}{{{x^2}}} \cr & \cr & {\text{Evaluating the integral}} \cr & g\left( x \right) = \int_\pi ^{1/x} {\left( {1 - \cos t} \right)} dt = \left[ {t - \sin t} \right]_\pi ^{1/x} \cr & g\left( x \right) = \left( {\frac{1}{x} - \sin \left( {\frac{1}{x}} \right)} \right) - \left( {\pi - \sin \left( \pi \right)} \right) \cr & g\left( x \right) = \frac{1}{x} - \sin \left( {\frac{1}{x}} \right) - \pi \cr & {\text{Differentiating}} \cr & g'\left( x \right) = - \frac{1}{{{x^2}}} - \cos \left( {\frac{1}{x}} \right)\left( { - \frac{1}{{{x^2}}}} \right) \cr & g'\left( x \right) = \frac{1}{{{x^2}}}\cos \left( {\frac{1}{x}} \right) - \frac{1}{{{x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.