Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 460: 25

Answer

$$\left( {\text{a}} \right) - \cos \left( {{x^3}} \right){\text{ }}\left( {\text{b}} \right) - {\tan ^2}x$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)\frac{d}{{dx}}\int_x^\pi {\cos \left( {{t^3}} \right)} dt \cr & {\text{Differentiate, use }}\frac{d}{{dx}}\left[ {\int_x^a {f\left( t \right)dt} } \right] = - f\left( x \right),{\text{ then}} \cr & \frac{d}{{dx}}\left[ {\int_x^\pi {\cos \left( {{t^3}} \right)} dt} \right] = - \cos \left( {{x^3}} \right) \cr & \cr & \left( {\text{b}} \right)\frac{d}{{dx}}\int_{\tan x}^3 {\frac{{{t^2}}}{{1 + {t^2}}}} dt \cr & {\text{Differentiate, use }}\frac{d}{{dx}}\left[ {\int_{g\left( x \right)}^a {f\left( t \right)dt} } \right] = - f\left( {g\left( x \right)} \right)g'\left( x \right),{\text{ then}} \cr & \frac{d}{{dx}}\left[ {\int_{\tan x}^3 {\frac{{{t^2}}}{{1 + {t^2}}}} dt} \right] = - \frac{{{{\left( {\tan x} \right)}^2}}}{{1 + {{\left( {\tan x} \right)}^2}}}\frac{d}{{dx}}\left[ {\tan x} \right] \cr & {\text{ }} = - \frac{{{{\tan }^2}x}}{{1 + {{\tan }^2}x}}\left( {{{\sec }^2}x} \right) \cr & {\text{ }} = - \frac{{{{\tan }^2}x}}{{{{\sec }^2}x}}\left( {{{\sec }^2}x} \right) \cr & {\text{ }} = - {\tan ^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.