Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 68

Answer

See explanation.

Work Step by Step

(a) $\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{n} 1=\lim _{n \rightarrow+\infty} 1=\frac{n}{n}=1$ (b) $\lim _{n \rightarrow+\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k=\lim _{n \rightarrow+\infty} \frac{(1+n)n}{2 n^{2}}=\frac{1}{2}$ (c) $\lim _{n \rightarrow+\infty} \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}=\lim _{n \rightarrow+\infty} \frac{(1+n)(1+2 n)n}{6 n^{3}}=\frac{2}{6}=\frac{1}{3}$ (d) $\lim _{n \rightarrow+\infty} \frac{1}{n^{4}} \sum_{k=1}^{n} k^{3}=\lim _{n \rightarrow+\infty} \frac{(1+n)^{2}n^{2}}{4 n^{4}}=\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.