Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 64

Answer

\[ \begin{array}{l} S-r S=a\left(1+r+r^{2}+\ldots+r^{n}\right)-a\left(r+r^{2}+\ldots+r^{n}+r^{n+1}\right)=a-a r^{n+1} \\ S-r S=a-a r^{n+1} \Rightarrow S(1-r)=-a r^{1+n} +a \Rightarrow S=\frac{-a r^{1+n}+a}{-r+1} \end{array} \]

Work Step by Step

We have $S=\sum_{k=0}^{n} a r^{k}$ \[ \begin{aligned} -r S+S &=\sum_{k=0}^{n} -r+a r^{k} \sum_{k=0}^{n} a r^{k} \\ &=-\sum_{k=0}^{n} a r^{1+k} +\sum_{k=0}^{n} a r^{k}\\ &=\left(1+r+r^{2}+\ldots+r^{n}\right)a-\left(r+r^{2}+\ldots+r^{n}+r^{n+1}\right)a \\ &=a\left(1+r+r^{2}+\ldots+r^{n}-r-r^{2}-\ldots-r^{n}-r^{n+1}\right) \\ &=a\left(-r^{1+n}+1\right)a \\ &=\overline{-a r^{1+n}+a} \\ & \therefore -r S+S=-a r^{1+n}+a \end{aligned} \] \[ \because -r S+S=-a r^{1+n}+a \] \[ \begin{array}{l} \Rightarrow (-r+1)S=-a r^{1+n}+a \\ \Rightarrow S=\frac{-a r^{1+n}+a}{-r+1} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.