Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 61

Answer

(a)See the proof: by changing into a telescoping sum, we have: \[ \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(-1+2 n)(1+2 n)}=\frac{n}{1+2 n} \] (b) \[ \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{(1+2 k)(-1+2 k)}=\frac{1}{2} \]

Work Step by Step

(a) We will to prove $: \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 n+1)(2 n-1)}=\frac{n}{2 n+1}$ We will change this sum into the telescoping sums by using Partial Fractions for each term: \[ \frac{1}{(1+2 n)(-1+2 n)}=\frac{1}{2}\left[\frac{1}{2 n-1}-\frac{1}{2 n+1}\right] \] Also: \[ \begin{array}{c} \frac{1}{1 \cdot 3}=\left(-\frac{1}{3}+1\right)\frac{1}{2} \\ \frac{1}{3 \cdot 5}=\left(-\frac{1}{5}+\frac{1}{3}\right)\frac{1}{2} \\ =\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\ldots+\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\ =\left(-\frac{1}{1+2 n}+1\right)\frac{1}{2} \\ =\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot .5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\ldots+\frac{1}{2}\left(\frac{1}{-1+2 n}-\frac{1}{1+2 n}\right) \\ =\frac{1}{2}\left(\frac{1-1+2 n}{1+2 n}\right) \\ \therefore \frac{1}{1+2 n} \end{array} \] (b) From part (a), we will find: \[ \begin{aligned} \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{(1+2 k)(-1+2 k)} &=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{2}\left[\frac{1}{-1+2 k}-\frac{1}{1+2 k}\right]\right) \\ &=\lim _{n \rightarrow \infty} \frac{n}{1+2 n} \end{aligned} \] \[ \begin{array}{l} =\lim _{n \rightarrow \infty} \frac{n}{1+2 n} \\ =\left[\frac{1}{2}\right] \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.