Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 63

Answer

$\sum_{i=1}^{n}\left(-\bar{x}+x_{i}\right)=-\sum_{i=1}^{n} \bar{x}+\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}-\frac{\sum_{i=1}^{n} x_{i}}{n} \cdot n +x_{i}=0$

Work Step by Step

Let $ \bar {x} $ be the average of the numbers $x_{1}, x_{2}, \ldots, x_{n}$ \[ \therefore \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \] Theorem ( $5.4 .1)$ \[ \begin{aligned} \sum_{i=1}^{n}\left(-\bar{x}+x_{i}\right) &=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \bar{x} \\ &=-\bar{x} \sum_{i=1}^{n} 1+ \sum_{i=1}^{n} x_{i}\\ &=\sum_{i=1}^{n} x_{i}-\frac{\sum_{i=1}^{n} x_{i}}{n} \cdot n \\ &=-\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} x_{i} \\ &=0 \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.