Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 59

Answer

$\therefore \sum_{k=2}^{20}\left(-\frac{1}{(k-1)^{2}}+\frac{1}{k^{2}}\right)=-\frac{399}{400}$

Work Step by Step

We find: $\begin{aligned} \sum_{k=2}^{20}\left(\frac{1}{k^{2}}-\frac{1}{(k-1)^{2}}\right) &=\left(\frac{1}{2^{2}}-\frac{1}{(2-1)^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{(3-1)^{2}}\right)+\left(\frac{1}{4^{2}}-\frac{1}{(4-1)^{2}}\right)+\ldots+\left(\frac{1}{20^{2}}-\frac{1}{(20-1)^{2}}\right) \\ &=\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{2^{2}}\right)+\left(\frac{1}{4^{2}}-\frac{1}{3^{2}}\right)+\ldots+\left(\frac{1}{20^{2}}-\frac{1}{19^{2}}\right) \\ &=\left(\frac{1}{4}-\frac{1}{1}\right)+\left(\frac{1}{9}-\frac{1}{4}\right)+\left(\frac{1}{16}-\frac{1}{9}\right)+\ldots+\left(\frac{1}{400}-\frac{1}{361}\right) \end{aligned}$ $\left(\frac{y}{1}-\frac{1}{1}\right)+\left(\frac{y}{9}-\frac{y}{1}\right)+\left(\frac{1}{16}-\frac{y}{9}\right)+\ldots+\left(-\frac{1}{361}+\frac{1}{100}\right)$ $=-1+\frac{1}{400}$ $=-\frac{399}{400}$ $\therefore \sum_{k=2}^{20}\left(\frac{1}{k^{2}}-\frac{1}{(k-1)^{2}}\right)=-\frac{399}{400}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.