Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 299: 60

Answer

$\sum_{k=1}^{100}\left(-2^{k}+2^{1+k}\right)=-2+2^{101}$

Work Step by Step

We find: $\sum_{k=1}^{100}\left(-2^{k}+2^{k+1}\right)=\left(2^{2}-2^{1}\right)+\left(2^{3}-2^{2}\right)+\left(2^{4}-2^{3}\right)+\ldots+\left(2^{101}-2^{100}\right)$ $=\left(2^{2}-2\right)+\left(2^{8}-2^{2}\right)+\left(2^{1}-2^{8}\right)+\ldots+\left(2^{101}-2^{100}\right)$ $=-2+2^{101}$ $\therefore \sum_{k=1}^{100}\left(-2^{k}+2^{1+k}\right)=-2+2^{101}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.