Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 407: 67

Answer

$g'(x)=\frac{27x^2-3}{9x^2+1}-\frac{8x^2-2}{4x^2+1}$

Work Step by Step

Hint: $\frac{d}{dx}(\int_{a(x)}^{b(x)}f(u)du)=\frac{d}{dx}(F(b(x))-F(a(x))=f(b(x))\cdot b'(x)-f(a(x))\cdot a'(x)$ Given: $f(u)=\frac{u^2-1}{u^2+1}$, $a(x)=2x$, and $b(x)=3x$ Find $f(a(x))$: $f(2x)=\frac{(2x)^2-1}{(2x)^2+1}=\frac{4x^2-1}{4x^2+1}$ Find $f(b(x))$: $f(3x)=\frac{(3x)^2-1}{(3x)^2+1}=\frac{9x^2-1}{9x^2+1}$ Find $a'(x)$ and $b'(x)$: $a'(x)=\frac{d}{dx}(2x)=2$ $b'(x)=\frac{d}{dx}(3x)=3$ Find $g'(x)$: $g'(x)=f(3x)\cdot b'(x)-f(2x)\cdot a'(x)$ $g'(x)=\frac{9x^2-1}{9x^2+1}\cdot 3-\frac{4x^2-1}{4x^2+1}\cdot 2$ $g'(x)=\frac{27x^2-3}{9x^2+1}-\frac{8x^2-2}{4x^2+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.