Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 407: 41

Answer

$1$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /3} {\sec \theta \tan \theta } d\theta \cr & {\text{Recall that }}\frac{d}{{dx}}\left[ {\sec x} \right] = \sec x\tan x,\,{\text{ then}} \cr & \int_0^{\pi /3} {\sec \theta \tan \theta } d\theta = \left[ {\sec \theta } \right]_0^{\pi /3} \cr & {\text{Use The Fundamental Theorem of Calculus}},{\text{ Part 2}} \cr & \left[ {\sec \theta } \right]_0^{\pi /3} = \sec \left( {\frac{\pi }{3}} \right) - \sec \left( 0 \right) \cr & {\text{Simplify}} \cr & \left[ {\sec \theta } \right]_0^{\pi /3} = 2 - 1 \cr & \left[ {\sec \theta } \right]_0^{\pi /3} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.