Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 407: 50

Answer

$\frac{40}{9}+9\ln 3$

Work Step by Step

$\int_1^3\frac{(3x+1)^2}{x^3}dx=\int_1^3\frac{9x^2+6x+1}{x^3}dx$ $=\int_1^3\frac{9}{x}+\frac{6}{x^2}+\frac{1}{x^3}dx$ (Use the sum property for integrals) $=\int_1^3\frac{9}{x}dx+\int_1^36x^{-2}dx+\int_1^3x^{-3}dx$ $=[9\ln x]_1^3+[\frac{6x^{-2+1}}{-2+1}]_1^3+[\frac{x^{-3+1}}{-3+1}]_1^3$ $=[9\ln x]_1^3+[-\frac{6}{x}]_1^3+[-\frac{1}{2x^2}]_1^3$ $=(9\ln 3-9\ln 1)+(-\frac{6}{3}-(-\frac{6}{1}))+(-\frac{1}{18}-(-\frac{1}{2}))$ $=(9\ln 3- 9\cdot 0)+(-2+6)+(-\frac{1}{18}+\frac{1}{2})$ $=9\ln 3+4+\frac{4}{9}$ $=\frac{40}{9}+9\ln 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.