Answer
$\frac{512}{15}$
Work Step by Step
$\displaystyle\int^{4}_{0}(t^{2}+t^{3/2})dt=\int^{4}_{0}t^{2}dt+ \int^{4}_{0}t^{3/2}dt$
$=\frac{t^{3}}{3}]^{4}_{0}+\frac{2}{5}t^{5/2}]^{4}_{0}$
$=\frac{1}{3}(4^{3}-0^{3})+\frac{2}{5}(4^{5/2}-0^{5/2})$
$=\frac{64}{3}+\frac{64}{5}=\frac{512}{15}$