Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Review Exercises - Page 658: 44

Answer

$\{-5,-1,3\}$

Work Step by Step

We have to solve the quadratic equation: $$(x^2+2x)^2-14(x^2+2x)=15.\tag1$$ We substitute $y=x^2+2x$ and bring the equation to the standard form: $$y^2-14y-15=0.\tag2$$ We solve equation $(2)$: $$\begin{align*} (y+1)(y-15)&=0\\ y+1=0&\text{ or }y-15=0\\ y=-1&\text{ or }y=15. \end{align*}$$ We determine $x$ using the values of $y$ that we found. $\textbf{Case 1: }$ $y=-1$ $$\begin{align*} x^2+2x&=-1\\ x^2+2x+1&=0\\ (x+1)^2&=0\\ x+1&=0\\ x&=-1; \end{align*}$$ $\textbf{Case 2: }$ $y=15$ $$\begin{align*} x^2+2x&=15\\ x^2+2x-15&=0\\ (x-3)(x+5)&=0\\ x-3=0&\text{ or }x+5=0\\ x=3&\text{ or }x=-5. \end{align*}$$ Check the solutions: $$\begin{align*} x&=-1\\ ((-1)^2+2(-1))^2-14((-1)^2+2(-1))&\stackrel{?}{=}15\\ 1+15&\stackrel{?}{=}15\\ 15&=15\checkmark\\\\ x&=3\\ (3^2+2(3)^2-14(3^2+2(3))&\stackrel{?}{=}15\\ 225-210&\stackrel{?}{=}15\\ 15&=15\checkmark\\\\ x&=-5\\ ((-5)^2+2(-5))^2-14((-5)^2+2(-5))&\stackrel{?}{=}15\\ 225-210&\stackrel{?}{=}15\\ 15&=15\checkmark \end{align*}$$ The solution set of the equation is: $$\{-5,-1,3\}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.