Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.7 - Complex Numbers - Exercise Set - Page 571: 114

Answer

$ -\frac{3}{5}-\frac{4}{5}i$

Work Step by Step

Given \begin{equation} f(x)=\frac{x^2+11}{3-x} \end{equation} We want to find \begin{equation} f(4 i) \end{equation} Let $N(x) = x^2+11$ and $D(x) = 3-x$, then \begin{equation} \begin{aligned} N\left(4i \right)&=(4i)^2+11\\ &=16i^2+11\\ &= 16(-1)+11\\ &= -16+11\\ &= -5\\ D\left(4i\right)&=3-4i\\ \end{aligned} \end{equation} It follows that: \begin{equation} \begin{aligned} f(4 i)&= \frac{N(4i)}{D(4i)} \\ &=-\frac{5}{3-4i} \\ &= -\frac{5}{(3-4i)}\cdot \frac{(3+4i)}{(3+4i)}\\ & = -\frac{15+20i}{9+12i-12i-16i^2}\\ & = -\frac{15+20i}{9-16\cdot (-1)} \\ & = -\frac{15+20i}{9+16}\\ & = -\frac{15+20i}{25}\\ & =-\frac{15}{25}-\frac{20i}{25}\\ & = -\frac{3}{5}-\frac{4}{5}i \end{aligned} \end{equation} We could have also used the fact that $(a-bi)(a+bi) = a^2+b^2$ to make the solution shorter. \begin{equation} \begin{aligned} f(4 i)&= \frac{N(4i)}{D(4i)} \\ &=-\frac{5}{3-4i} \\ &= -\frac{5}{(3-4i)}\cdot \frac{(3+4i)}{(3+4i)}\\ & = -\frac{15+20i}{3^3+4^2}\\ & = -\frac{15+20i}{25} \\ & =-\frac{15}{25}-\frac{20i}{25}\\ & = -\frac{3}{5}-\frac{4}{5}i \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.