Answer
See graph
Work Step by Step
Given \begin{equation}
g(x)=2 \sqrt{x+3}.
\end{equation}
This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $$x+3\geq 0\implies x\geq- 3.$$ 1) The domain is $ x\geq -3$.
Make a table of the function, $g(x)$, versus $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -3 & 0& 10 & 20 \\
\hline \boldsymbol{g}(\boldsymbol{x})=2\sqrt{\boldsymbol{x}+\mathbf{3}} & 0 & 3.5 & 7.2 & 9.6 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth line to get the graph of the function.