Answer
See graph
Work Step by Step
Given \begin{equation}
f(x)=\sqrt[3]{x+2}.
\end{equation} This is an odd root function because the index, $n=3$, is odd. The domain is all real numbers.
Make a table of the function, $f(x)$, versus $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -40 & 0 & 25 & 60 \\
\hline \boldsymbol{f}(\boldsymbol{x})=\sqrt[3]{\boldsymbol{x}+\mathbf{2}} & -3.4 & 1.3 & 3.0 & 4.0 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth curve to get the graph of the function.