Answer
See graph
Work Step by Step
Given \begin{equation}
f(x)=-5 \sqrt{x+4}.
\end{equation}
This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $$x+4\geq 0\implies x\geq- 4.$$ 1) The domain is $ x\geq -4$.
Make a table of the function, $f(x)$ versus $x$.
\begin{equation}
\begin{array}{|c|ccccc|}
\hline \boldsymbol{x} &-4& 3 & 15& 20 & 25 \\
\hline \boldsymbol{f}(\boldsymbol{x})=-5\sqrt{\boldsymbol{x}+\mathbf{4}} & 0& -13.2 & -21.8 & -24.5 & -26.9 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth line to get the graph of the function.