Answer
See graph
Work Step by Step
Given \begin{equation}
h(x)=\sqrt{x-2}.
\end{equation} a) This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $$x-2\geq 0\implies x\geq 2.$$ 1) The domain is $[2, \infty)$.
Make a table of the function, $h(x)$ versus $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & 2 & 3 & 6 & 11 \\
\hline \boldsymbol{h}(\boldsymbol{x})=\sqrt{\boldsymbol{x}-\mathbf{2}} & 0 & 1 & 2 & 3 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth curve to get the graph of the function.