Answer
See graph
Work Step by Step
Given \begin{equation}
f(x)=\sqrt{x+7}.
\end{equation} a) This is an even root function because the index, $n=2$ is even. The radicand must be positive. So, we require $$x+7\geq 0\implies x\geq -7.$$ 1)The domain is $(-\infty,-7]$.
Make a table of of the function's values of some values of $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -7 & 0 & 5 & 10 \\
\hline \boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}+\mathbf{7}} & 0 & 5.9161 & 7.7460 & 9.2195 \\
\hline
\end{array}
\end{equation} Plot the points in the table and join them by a smooth curve to find the graph of the function.