Answer
See graph
Work Step by Step
Given \begin{equation}
h(x)=\sqrt{2-x}= \sqrt{-(x-2)}.
\end{equation} This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $$-(x-2)\geq 0\implies x-2\leq 0\implies x\leq 2.$$ 1) The domain is $ x\leq 2$.
Make a table of the function, $h(x)$ verses $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -10 & -5& 0 & 2 \\
\hline \boldsymbol{h}(\boldsymbol{x})=\sqrt{\boldsymbol{2}-\mathbf{x}} & 3.5 & 2.6 & 1.4 & 0 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth curve to graph the function.