Answer
See graph
Work Step by Step
Given \begin{equation}
f(x)=\sqrt{x+5}.
\end{equation} a) This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $$x+5\geq 0\implies x\geq -5.$$ 1) The domain is $[-5,\infty)$.
Make a table of the function, $f(x)$ versus $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -7 & 0 & 5 & 10 \\
\hline \boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}+\mathbf{5}} & 0 & 2.24 & 3.16 & 3.87 \\
\hline
\end{array}
\end{equation} Plot the points from the table and join them by a smooth curve to get the graph of the function.