Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 375: 98

Answer

$\left(-\frac{5}{3},-\frac{143}{9}\right)$ and $(3.5,68.5)$

Work Step by Step

Given $$ \begin{cases} & y=4 x^2+9 x-12 \\ & y=-2 x^2+20 x+23. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} & 4 x^2+9 x-12=-2 x^2+20 x+23 \\ & 4 x^2+2 x^2+9 x-20 x=23+12 \\ & 6 x^2-11 x=35 \\ & 6 x^2-11 x-35=0 \end{aligned} $$ $$ \begin{array}{r} a=6 \\ b=-11\\ c=-35 \end{array} $$ $$ \begin{aligned} & x=\frac{-(-11) \pm \sqrt{(-11)^2-4 \cdot 6 \cdot (-35)}}{2 \cdot 6} \\ & x=\frac{11 \pm \sqrt{961}}{12} \\ & x=\frac{11 \pm 31}{12} \\ \end{aligned} $$ $$ \begin{aligned} x & =\frac{11 - 31}{12} \\ & =-\frac{5}{3} \\ &\approx -1.66667\\ x & =\frac{11 + 31}{12} \\ & =3.5. \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y&= 4\left(-\frac{5}{3}\right)^2+9\cdot\left(-\frac{5}{3}\right) -12\\ &=-\frac{143}{9}\\ & \approx -15.888889\\ y&= 4(3.5)^2+9\cdot( 3.5) -12\\ & =68.5. \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $\left(-\frac{5}{3},-\frac{143}{9}\right)$ and $(3.5,68.5)$..
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.