Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 375: 88

Answer

$(-1.55,-0.52)$, $(2.05,13.85 )$

Work Step by Step

Given $$ \begin{cases} y=4 x^2+2 x-7 \\ y=-2 x^2+5 x+12. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} 4 x^2+2 x-7 & =-2 x^2+5 x+12 \\ 4 x^2+2 x^2+2 x-5 x & =12+7 \\ 6 x^2-3 x & =19 \\ 6 x^2-3 x-19 & =0. \end{aligned} $$ Solve the equation: $$ \begin{aligned} &a=6 \\ & b=-3 \\ & c=-19\\ x& =\frac{-(-3) \pm \sqrt{(-3)^2-4 \cdot 6(-19)}}{2 \cdot 6} \\ x& =\frac{3 \pm \sqrt{465}}{12}\\ x_1&=\frac{3 -\sqrt{465}}{12}\\ &\approx -1.54698\\ x_2&=\frac{3 +\sqrt{465}}{12}\\ &\approx 2.04698 \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y_1&=4\cdot (2.04698 )^2+2\cdot( 2.04698) -7 \\ & \approx 13.8545 \\ y_2&=4\cdot (-1.54698)^2+2\cdot(-1.54698) -7\\ & \approx -0.5214. \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $(-1.55,-0.52)$ and $(2.05,13.85 )$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.