Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 375: 87

Answer

$(2.5,7.25)$, $(3,8)$

Work Step by Step

Given $$ \begin{cases} y=x^2-4 x+11 \\ y=-x^2+7 x-4. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} x^2-4 x+11 & =-x^2+7 x-4 \\ x^2+x^2-4 x-7 x & =-4-11 \\ 2 x-11 x & =-15 \\ 2 x-11 x+15 & =0. \end{aligned} $$ Solve the equation: $$ \begin{aligned} & a=2 \\ & b=-11 \\ & c=15 \end{aligned} $$ $$ \begin{aligned} x& =\frac{-(-11) \pm \sqrt{(-11)^2-4 \cdot 2 \cdot 15}}{2 \cdot 2} \\ x& =\frac{11 \pm 1}{4}\\ x_1&=\frac{11 +1}{4}= 3 \\ x_2&=\frac{11 - 1}{4}= \frac{5}{2} \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y_1&=3^2-4\cdot 3+11\\ & = 8\\ y_2&=2.5^2-4\cdot 2.5+11\\ & = 7.25 \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $(2.5,7.25)$ and $(3,8)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.