Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 375: 91

Answer

$(-3,-29)$

Work Step by Step

Given $$ \begin{cases} & y=x^2+6 x-20 \\ & y=-x^2-6 x-38. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} x^2+6 x-20 & =-x^2-6 x-38 \\ x^2+x^2+6 x+6 x & =20-38 \\ 2 x^2+12x & =-18 \\ 2 x^2+12x+18 & =0 \end{aligned} $$ $$ \begin{aligned} & a=2 \\ & b=12\\ & c=18 \end{aligned} $$ $$ \begin{aligned} x& =\frac{-12 \pm \sqrt{12^2-4 \cdot 2 \cdot 18}}{2 \cdot 2}\\ x& =\frac{-12 \pm \sqrt{0}}{4}\\ x&= -3. \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y&= (-3 )^2+6\cdot( -3) -20\\ & = -29. \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $(-3,-29)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.