Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 375: 89

Answer

$(-2.53,-1.04)$, $(1.21,-0.7214)$

Work Step by Step

Given $$ \begin{cases} y=-1.8 x^2-2.3 x+4.7 \\ y=2.5 x^2+3.4 x-8.5. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} -1.8 x^2-2.3 x+4.7 & =2.5 x^2+3.4 x-8.5 \\ -1.8 x^2-2.5 x^2-2.3 x-3.4 x & =-8.5-4.7\\ -4.3 x^2-5.7 x & =-13.2 \\ (-10)\left(-4.3 x^2-5.7 x+13.2\right. & =0 \\ 43 x^2+57 x-132 & =0 \end{aligned} $$ Solve the equation: $$ \begin{aligned} & a=43 \\ & b=57 \\ & c=-132\\ x& =\frac{-(-57) \pm \sqrt{(-57)^2-4(-43) \cdot 132}}{2(-43)}\\ x& =-\frac{57\pm\sqrt{25953}}{86} \end{aligned} $$ The solutions are: $$ \begin{aligned} x_1&=-\frac{57-\sqrt{25953}}{86}\\ &\approx 1.21045\\ x_2&=-\frac{57+\sqrt{25953}}{86}\\\\ &\approx -2.53603 \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y_1&=-1.8\cdot (1.21045 )^2-2.3\cdot( 1.21045) +4.7 \\ & \approx -0.7214 \\ y_2&=-1.8\cdot (-2.53603 )^2-2.3\cdot( -2.53603) +4.7\\ & \approx -1.0437. \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $(-2.53,-1.04)$ and $(1.21,-0.7214)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.