Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 679: 43

Answer

$6309.6$ cm

Work Step by Step

Given \begin{equation} M=\log \left(\frac{I}{10^{-4}}\right). \end{equation} Find an expression of the intensity, $I$ in term of $M$. Use the relationship, if $A= \log B$, then, $ B= 10^{A}$.\begin{equation} \begin{aligned} \log \left(\frac{I}{10^{-4}}\right)& = M\\ \frac{I}{10^{-4}}& =10^{M}\\ I&= 10^{-4}\cdot 10^{M}\\ I&= 10^{M-4}. \end{aligned} \end{equation} Now, set $M= 7.8 $ to find the intensity. \begin{equation} \begin{aligned} I&= 10^{7.8-4}\\ & \approx 6309.6. \end{aligned} \end{equation} The intensity of the earthquake of magnitude $7.8$ is $6309.6$ cm.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.