Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 679: 38

Answer

$g^{-1}(x)= \frac{\log \left(- \frac{x}{3} \right)}{\log 5}$

Work Step by Step

Given \begin{equation} g(x)=-3(5)^x. \end{equation} Let $y= -3(5)^x $. Solve for $x$ in terms of $y$. \begin{equation} \begin{aligned} -3(5)^x &= y\\ 3(5)^x &= -y\\ \log\left(3(5)^x\right) & = \log (-y)\\ \log (5)^x+\log(3) & = \log (-y)\\ x\log 5&= \log (-y)-\log(3)\\ x\log 5&= \log \left(- \frac{y}{3} \right)\\ \therefore x&= \frac{\log \left(- \frac{y}{3} \right)}{\log 5}. \end{aligned} \end{equation} Interchange $x$ and $y$. That is, set $y= \frac{\log \left(- \frac{x}{3} \right)}{\log 5}$. The inverse of the function is: \begin{equation} g^{-1}(x)= \frac{\log \left(- \frac{x}{3} \right)}{\log 5}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.