Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 679: 42

Answer

a) $f(x)+ g(x) = 2 x^2+9 x-13$ b) $f(g(x))=8 x^2-26 x+7 $ c) $f(x)g(x)= 4x^3+4x^2-51x+40 $

Work Step by Step

Given \begin{equation} f(x)=2 x^2+7 x-8 \text { and } g(x)=2 x-5. \end{equation} A) Add the two functions. \begin{equation} \begin{aligned} f(x)+g(x)& =2 x^2+7 x-8+2 x-5 \\ &=2 x^2+9 x-13. \end{aligned} \end{equation} B) Find $f(g(x))= f(2 x-5)$. \begin{equation} \begin{aligned} f(g(x))& =2(2 x-5)^2+7(2 x-5)-8 \\ & = 2(4x^2-20x+25)+14x-35-8\\ & =8 x^2-40 x+14 x+50-43\\ &=8 x^2-26 x+7. \end{aligned} \end{equation} C) Multiply the two functions. \begin{equation} \begin{aligned} f(x)\cdot g(x)& =(2 x^2+7 x-8)\cdot(2 x-5 )\\ & = 2x^2(2 x-5 )+7x(2 x-5 )-8(2 x-5 )\\ & = 4x^3-10x^2+14x^2-35x-16x+40\\ & = 4x^3+4x^2-51x+40. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.