Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 679: 36

Answer

a) $B(m)=4000(2)^{\frac{m}{10}}$ b) $80$ minutes c) $ 67,108,864,000$

Work Step by Step

a) Let $B(m)$ be the number of Salmonella bacteria on the counter after $m$ minutes. Then, the initial bacteria population is $B_0= 4000$, the doubling constant is $b= 2$ and the exponent is $a=\frac{m}{10}$, since the bacteria double every 10 minutes. Hence, our model is. $$ B(m) = B_0(b)^a= 4000(2)^{\frac{m}{10}}$$ b) First solve for $m$ and set $B(m)= 1000000$ to find $m$. \begin{equation} \begin{aligned} B(m) &= 4000(2)^{\frac{m}{10}}\\ \ln B(m) & =\ln\left(4000(2)^{\frac{m}{10}} \right)\\ \ln B(m) & =\ln 2^{\frac{m}{10}}+\ln\left(4000 \right)\\ \ln B(m)- \ln\left(4000 \right) & =\frac{m}{10}\ln (2)\\ \therefore m&= \frac{10\cdot \ln B(m)-10\ln(4000)}{\ln (2)}\\ m& = \frac{10\cdot \ln (1000000)-10\ln(4000)}{\ln (2)}\\ &\approx 80. \end{aligned} \end{equation} The bacteria population will be $1$ million after about $80$ minutes. c) There are $4$ hours between $2$ pm to $6$ pm. This is equivalent to $240$ minutes. Find $B(240)$. \begin{equation} \begin{aligned} B(240)&=4000(2)^{\frac{240}{10}}\\ &=4000(2)^{24}\\ &= 67,108,864,000 \end{aligned} \end{equation} The bacteria population will become $67,108,864,000$ if still unnoticed until $6$ pm.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.