Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Appendix B - Matrices - B Exercises - Page B-15: 36

Answer

$(x,y,z)=(13,0,-3)$.

Work Step by Step

The augmented matrix is $\begin{bmatrix} 1&0 &5 & -2\\ 0 & -2 & 1 & -3\\ 0& 0 & -4 & 12 \end{bmatrix}$. For the linear equation. First column $=$ coefficients of $x$. Second column $=$ coefficients of $y$ Third column $=$ coefficients of $z$ and fourth column $=$ the right-hand side. The given matrix is a upper triangular form. Rewrite the third row as a linear equation. $\Rightarrow 0x+0y-4z=12$ $\Rightarrow -4z=12$ Divide both sides by $-4$. $\Rightarrow \frac{-4z}{-4}=\frac{12}{-4}$ Simplify. $\Rightarrow z=-3$ Rewrite the second row as a linear equation. $\Rightarrow 0x-2y+1z=-3$ $\Rightarrow -2y+z=-3$ Substitute $z=-3$. $\Rightarrow -2y+(-3)=-3$ Clear the parentheses. $\Rightarrow -2y-3=-3$ Add $3$ to both sides. $\Rightarrow -2y-3+2=-3+3$ Simplify. $\Rightarrow -2y=0$ Divide both sides by $-2$. $\Rightarrow \frac{-2y}{-2}=\frac{0}{-2}$ Simplify. $\Rightarrow y=0$ Rewrite the first row as a linear equation. $\Rightarrow 1x+0y+5z=-2$ $\Rightarrow x+5z=-2$ Substitute $z=-3$. $\Rightarrow x+5(-3)=-2$ $\Rightarrow x-15=-2$ Add $15$ to both sides. $\Rightarrow x-15+15=-2+15$ Simplify. $\Rightarrow x=13$ The solution set is $(x,y,z)=(13,0,-3)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.