Answer
$(x,y)=(6,3)$.
Work Step by Step
The augmented matrix is
$\begin{bmatrix}
1&-2 &0 \\
0 & 3 &9
\end{bmatrix}$.
For the linear equation.
First column $=$ coefficients of $x$.
Second column $=$ coefficients of $y$
and third column $=$ the right-hand side.
The given matrix is a upper triangular form.
Rewrite the second row as a linear equation.
$\Rightarrow 0x+3y=9$
$\Rightarrow 3y=9$
Divide the equation by $3$.
$\Rightarrow \frac{3y}{3}=\frac{9}{3}$
Simplify.
$\Rightarrow y=3$
Rewrite the first row as a linear equation.
$\Rightarrow 1x-2y=0$
Substitute $y=3$.
$\Rightarrow x+-2(3)=0$
Clear the parentheses.
$\Rightarrow x-6=0$
Add $6$ to both sides.
$\Rightarrow x-6+6=0+6$
Simplify.
$\Rightarrow x=6$
The solution set is $(x,y)=(6,3)$.