Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Appendix B - Matrices - B Exercises - Page B-15: 35

Answer

$(x,y,z)=(\frac{23}{4},-\frac{1}{2},-5)$.

Work Step by Step

The augmented matrix is $\begin{bmatrix} 2&-1 &1 &7\\ 0 & -2 & 1 & -4\\ 0& 0 & -3 & 15 \end{bmatrix}$. For the linear equation. First column $=$ coefficients of $x$. Second column $=$ coefficients of $y$ Third column $=$ coefficients of $z$ and fourth column $=$ the right-hand side. The given matrix is a upper triangular form. Rewrite the third row as a linear equation. $\Rightarrow 0x+0y-3z=15$ $\Rightarrow -3z=15$ Divide both sides by $-3$. $\Rightarrow \frac{-3z}{-3}=\frac{15}{-3}$ Simplify. $\Rightarrow z=-5$ Rewrite the second row as a linear equation. $\Rightarrow 0x-2y+1z=-4$ $\Rightarrow -2y+z=-4$ Substitute $z=-5$. $\Rightarrow -2y+(-5)=-4$ Clear the parentheses. $\Rightarrow -2y-5=-4$ Add $5$ to both sides. $\Rightarrow -2y-5+5=-4+5$ Simplify. $\Rightarrow -2y=1$ Divide both sides by $-2$. $\Rightarrow \frac{-2y}{*2}=\frac{1}{-2}$ Simplify. $\Rightarrow y=-\frac{1}{2}$ Rewrite the first row as a linear equation. $\Rightarrow 2x-1y+1z=7$ $\Rightarrow 2x-y+z=7$ Substitute $y=-\frac{1}{2}$ and $z=-5$. $\Rightarrow 2x-(-\frac{1}{2})+(-5)=7$ Clear the parentheses. $\Rightarrow 2x+\frac{1}{2}-5=7$ $\Rightarrow 2x+\frac{1-10}{2}=7$ $\Rightarrow 2x-\frac{9}{2}=7$ Add $\frac{9}{2}$ to both sides. $\Rightarrow 2x-\frac{9}{2}+\frac{9}{2}=7+\frac{9}{2}$ Simplify. $\Rightarrow 2x=\frac{14+9}{2}$ $\Rightarrow 2x=\frac{23}{2}$ Divide both sides by $2$. $\Rightarrow \frac{2x}{2}=\frac{23}{2}\cdot \frac{1}{2}$ Simplify. $\Rightarrow x=\frac{23}{4}$ The solution set is $(x,y,z)=(\frac{23}{4},-\frac{1}{2},-5)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.